Wencai Zhang, Wenguang Chen, Zhenting Zhao, Liang Li, Ruqian Zhang, Dongheng Yao, Tingting Xie, Enyi Xie, Xiangbin Kong, Lisuo Ren
Abstract
Remote sensing technology provides an efficient and low-cost approach for acquiring large-scale soil information, offering notable advantages for soil organic matter (SOM) mapping. However, in recent years, the bare soil period of cultivated land in Northeast China has significantly shortened, posing serious challenges to traditional SOM prediction and mapping methods that rely on optical imagery. Meanwhile, current approaches that integrate optical imagery, radar imagery, and environmental covariates have yet to fully exploit the potential of remote sensing data in SOM mapping. To address this, this study focuses on the typical black soil region in Northeastern China, acquiring median synthetic images from different time periods (crop sowing, growing, and harvest stages) along with vegetation and radar indices. Six data groups were created by integrating environmental covariate data. Four machine learning models—XGBoost, BRT, ET, and RF—were used to analyze the SOM prediction accuracy of different groups. The group and model with the highest prediction accuracy were selected for SOM mapping in cultivated land. The results show that: (1) in the same model, incorporating radar images and their related indices significantly improves SOM prediction accuracy; (2) when using four machine learning models for SOM prediction, the RF model, which integrates optical images, radar images, vegetation indices, and radar indices from the crop sowing and growing periods, achieves the highest accuracy (R2 = 0.530, RMSE = 6.130, MAE = 4.822); (3) in the optimal SOM prediction model, temperature, precipitation, and elevation are relatively more important, with radar indices showing greater importance than vegetation indices; (4) uncertainty analysis and accuracy verification at the raster scale confirm that the SOM mapping results obtained in this study are highly reliable. This study made significant progress in SOM prediction and mapping by employing a radar–optical image fusion strategy combined with crop growth information. It helped address existing research gaps and provided new approaches and technical solutions for remote sensing-based SOM monitoring in regions with short bare soil periods.